Signal Analysis-

1.5

Applied Signal Processing - 18/4/2007 13.00-16.00h

Please put your name and student number on all of your answer sheets. The final grade for this exam will be $\frac{9}{10.5}(total\ number\ of\ points)+1$.

1. Find the z-transform of the following sequences. Wherever convenient, use the properties of the z-transform to make the solution easier:

(a)
$$x[n] = \left(\frac{1}{2}\right)^n \mu[-n]$$
 (0.5)

(b)
$$x[n] = \left(\frac{1}{3}\right)^n \mu[n] + 4^n \mu[-n-1]$$
 (0.5)

(c)
$$x[n] = n \left(\frac{1}{2}\right)^n \mu[n+1]$$
 (0.5)

2. Consider the discrete-time LTI system described by the following simple difference equation:

$$y[n]=x[n]-x[n-1]$$

PART I

- (a) Determine the impulse response of this system, h[n], and plot h[n].
- (b) Determine and write a closed-form expression for the DTFT, $H(e^{i\omega})$, of h[n]. $H(e^{i\omega})$ is the frequency response of the system.
- (c) Plot the magnitude $\left|H\left(e^{i\omega}\right)\right|$ over the range $-\pi < \omega < \pi$
- (d) Plot the phase of $H(e^{i\omega})$ over $-\pi < \omega < \pi$ ((a)-(d) 1.5 points)

PART II

Given
$$x_a(t)=3(1-|t|)\{\mu(t+1)-\mu(t-1)\}$$
, where $\mu(t)=\begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$.

Observe that $x_a(t)$ has a triangular shape of height 3 and a duration of 2 seconds centered at t=0.

Let $x[n] = x_a(nT_s)$, where $T_s = \frac{1}{3}$. This means that x[n] is obtained by sampling $x_a(t)$ at the rate of 3 samples per second.

- (e) Plot x[n]
- (f) Determine and write a closed-form expression for the DTFT, $X(e^{iw})$, of x[n]
- (g) Plot the magnitude $|X(e^{i\omega})|$ over $-\pi < \omega < \pi$ ((e)-(g) 2 points)

PART III

- (h) Determine and plot the output signal y[n] when the sampled signal x[n] is input to the system y[n]=x[n]-x[n-1]
- (i) Determine and write a closed-form expression for the DTFT, $Y(e^{iw})$, of y[n]
- (j) Plot the magnitude $|Y(e^{i\omega})|$ over $-\pi < \omega < \pi$
- (k) Determine the numerical value of $\sum_{n=-\infty}^{n=\infty} y^2[n]$. ((h)-(k) 1.5 points)
- 3. Consider the discrete-time LTI system defined by the transfer function

$$H(z) = \frac{20 - 24z^{-1} + 20z^{-2}}{(2 - z^{-1})(2 + 2z^{-1} + z^{-2})}$$

- (a) Draw the pole-zero diagram of H(z). (0.5)
- (b) Given that the impulse response h[n] of this system is causal, what is the Region of Convergence? (0.5)
- (c) Draw a block diagram which implements this transfer function in cascade form, using 1st and 2nd order sections. (1)

4. Given the second orderband stop filter with transfer function

$$H_{BS}(z) = \frac{\kappa (1 - 2\beta z^{-1} + z^{-2})}{1 - \beta (1 + \alpha) z^{-1} + \alpha z^{-2}}$$

where α , β and γ are real constants, with $|\alpha| < 1$, $|\beta| < 1$

- (a) Determine α and β so that filter has a notch at $\omega_0 = 0.3 \, \pi$ and a band width of $0.3 \, \pi$. (1)
- (b) What is the quality factor of the filter? (0.5)
- (c) Draw the magnitude response of $H_{BS}(z)$ (0.5)